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FIGURE 4.12

ations are enabled by logic levels and activated by clock signals. The preceding
counter is called a ripple counter because changes ripple down the flip-flop chain.

In Fig. 4.12 the ENABLE input to the first flip-flop in the chain X, goes to
two AND gates, which also have the outputs of the flip-flop as inputs. Note: if the
ENABLE signal is a 0, the two AND gates will have O outputs and X, will remain
in the same state regardless of how many clock pulses occur.

When the ENABLE signal is a 1, however, the outputs from flip-flop X,
cause that flip-flop to always change values when a clock pulse occurs. Thus the
counter records the number of clock pulses that occur while the ENABLE is on.
Then the flip-flop X, will change only when X, is a 1, the ENABLE signal is a 1,
and a positive-going clock signal occurs. Similarly, X; will change states only
when X, and X, are 1s, the ENABLE is a 1, and a clock positive edge occurs.

The two AND gates combined with an RS flip-flop in Fig. 4.12 are so useful
that most popular lines of flip-flops contain in a single integrated-circuit container
the flip-flop and its two AND gates, as shown in Fig. 4.13(a).

Figure 4.13(b) shows another very popular and useful flip-flop, which con-
sists of the RS flip-flop and its two AND gates, but with the AND gates having
the cross-coupling already permanently made. In this form the two lines taken
outside are called J and X, and the flip-flop is called a JK flip-flop. Analysis of
this flip-flop indicates that the J and K inputs act just as RS inputs for two 0 inputs—
in this case the flip-flop never changes states. Also, withaOonJ anda 1 on X,
the flip-flop goes to the O state when a clock positive edge appears; and with a 1
onJ and a 0 on X, the flip-flop goes to 1 when a clock positive edge appears. The
significant fact is that when both J and K are 1s, the flip-flop always changes states
when a clock positive edge appears.

The flip-flops in Fig. 4.13(a) and (b) both have DC RESET and DC SET
inputs. The bubbles at the input on the block diagram indicate that these are
activated by O inputs and are normally held at a 1 level. When, for instance, a 0
is placed on the DC SET input, the flip-flop goes to a 1 level regardless of the
clock or other inputs. DC SET and DC RESET should not be Os at the same time,
because this is forbidden and leads to an undetermined next state.

It is a general rule that bubbles, or small circles, at the DC SET and DC
RESET inputs mean that these inputs are activated by O levels. The absence of

Gated-clocked binary
counter.
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FIGURE 4.13

LU

INPUT | NEXT

! J K |STATE
Entire circuit is in 0 0@
single container 0 11(0
(a) 1 0|1
1 1] @Q

lBecomes

Clock

{c)

JK and D flip-flops.
(a) RS flip-flop with
AND gates. (b) How a
JK flip-flop is made
from an RS flip-flop.
(c) D flip-flop.

these bubbles would mean that the inputs were activated by ! levels and were
normally at 0. :

There is one other type of edge-triggered flip-flop now in general use, the D
Jflip-flop. This flip-flop simply takes the value at its input when a clock pulse appears
and remains in its same state until the next clock pulse appears. As shown in Fig.
4.13(c), the D flip-flop can be made from an RS flip-flop and an inverter. The
operation is essentially the same as that of the D latch previously explained, except
the D flip-flop operates on a clock edge and the latch is activated by a clock level.

The D flip-flop is very useful because when clocked, it takes the state on its
input and holds it until clocked again. Only a single input line is needed for a
transfer, whereas the RS or JK flip-flops require two input lines.

An example of the use of JK flip-flops is shown in Fig. 4.14(a) and (b).
Figure 4.14(a) shows the simplicity of a gated binary counter with JK flip-flaps.
Figure 4.14(b) shows a block diagram for a binary up-down counter. When the
UP ENABLE line is high or a 1, the counter will count up, that is, 0, 1, 2, 3,
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BCD COUNTERS

DOWN
ENABLE
Clock
DC RESET
(b)
FIGURE 4.14
Binary counters with
JK flip-flops. (a)
Gated ripple counter.
4, ... .When the DOWN ENABLE line is a 1, the counter will count down, that (¢} Up-down counter.
is, 6, 5, 4, . . . . In general, the counter will increase its value by 1 if the UP

ENABLE line is a 1 and a clock pulse arrives, or will decrease its value by a 1 if
the DOWN ENABLE input is a 1 and a clock pulse occurs.

A RESET line is provided which is used to DC RESET the counter to 0.
This is activated by a | on the RESET line.

BCD COUNTERS

4.9 The binary counters considered so far all count to their limit before resetting
to all Os. Often it is desired to have counters count in binary-coded decimal (BCD).
Figure 4.15(a) shows a typical BCD counter. Examination of this counter shows
that it counts normally until it reaches 1001; that is, the sequence until that time
is as follows:
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FIGURE 4.15
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X4 X3 Xz X1
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1

When the next negative-going edge at the input occurs, however, the BCD
counter returns to all Os. At the same time (that is, during the interval when the
counter goes from 9 to 0) a negative-going signal edge occurs at the CARRY
output. This CARRY output can be connected to the INPUT of another BCD
counter, which will then be stepped by 1 when the first BCD stage goes from 9 to
0. This is shown in Fig. 4.15(b); where several four-flip-flop BCD stages are
combined to make a large counter.

If we consider just two of the ‘*‘BCD boxes,’’ we find the sequence to be as
follows:



8 4 2 1 8 4 2 1 value of bits
Ys Ys Y, Y. X¢ X5 X; X,
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 1 1 0 0 1
0 0 1 0 0 0 0 0
0 0 1 0 0 0 1

Here ‘we have counted to 21. This would continue until the counter reached 99,
when the Y part would put out a signal which could be used to gate another stage
to form a counter that could count to 999.

This sort of ‘repetition of various *‘boxes,”” or ‘‘modules,”’ such as a BCD
counter, is facilitated by manufacturers placing an entire four-stage BCD counter
in a single integrated-circuit container.

One thing should again be noted about the block diagram in Fig. 4.15(a).
The flip-flops are activated by negative-going shifts in input levels at the input.
This is indicated by the small circles or bubbles at the inputs. As a result, a flip-
flop such as X, is activated when X, goes from a 1 to a 0, that is, when the 1
output makes a negative transition.

Also note that unconnected inputs, such as the X inputs of all the flip-flops
and the J inputs of X, and X, are at 1 levels. This is due to the circuit construction.

INTEGRATED CIRCUITS

4.10 The flip-flops and gates used in modern computing machines—which range
from calculators and microcomputers through the large high-speed computers—are
constructed and packaged by using what is called integrated-circuit technology.
When integrated circuits are used, one or more complete gates or flip-flops are
packaged in a single integrated-circuit (IC) container. The IC containers provide
input and output pins or connections which are then interconnected by plated strips
on circuit boards, wires, or other means to form complete computing devices.

In earlier computers, flip-flop and gate circuits were constructed by using
discrete electrical components such as resistors, capacitors, transistors, and, before
that, vacuum tubes and relays. Individual components were interconnected to form

INTEGRATED
CIRCUITS
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flip-flops and gates which were then interconnected to form computers. With the
present-day IC technology, flip-flops and gates are fabricated in containers, and
only the IC containers (or ‘‘cans’’) need be interconnected.

Two typical IC containers are shown in Fig. 4.16(a). One is called a dual
inline package (in the trade it is called a “*coffin,”” or a DIP), and this particular
package has 14 pins which provide for external connections. For years this 14-pin
package was a standard in the industry, and plastic and ceramic DIPs of this sort
were the largest-selling IC package for some years.

There has been a tendency as IC technology improved, however, to increase
the number of pins per package. Packages with 16 to 40 pins are becoming popular,
and up to 100 pins per package can now be found in some IC manufacturers’
products.

Figure 4.16(b) through (e) shows how several gates and flip-flops are pack-
aged in a single container. The inputs and outputs are numbered, and each number
refers to an external pin on the IC container. A ground connection and a positive
power voltage are both required for each container, so that only 12 pins remain to
be used for the actual inputs and outputs to gates and flip-flops. (For these circuits,
each V. pin is connected to a 5.5-V power supply and GND to 0 V or system
ground.)

The particular circuits in Fig. 4.16 are called transistor-transistor logic (TTL)
circuits and are widely used high-speed circuits. These circuits have a 3.5-V level
for a 1 and 0.2-V level for a 0. The particular configurations shown with identical
pin connections are manufactured by just about every major IC manufacturer, and
packages from one manufacturer can be fairly easily substituted for another manu-
facturer’s packages (provided the speed requirements or loading capabilities are not
violated). There are many other packages with, for instance, three three-input
NAND gates, two RS flip-flops, exclusive OR gates, etc.

To illustrate the use of IC packages in logic design, we now examine an
implementation of Fig. 4.17, using the packages shown in Fig. 4.16. The logic
circuit in Fig. 4.17 is called a shift register with feedback,* for it consists of four
flip-flops connected in a shift-register configuration and ‘‘feedback’ from these

“This particular type of shift register with feedback is so widely used that complete books have been
written about it. It is sometimes called a linear shift register, a random sequence generation, or a linear
recurring sequence generator. With similar feedback connections, a register can be made with as many
flip-flops as desired, thus forming counters with sequences of 2¥ — 1 for any reasonable N (where N
is the number of flip-flops). )

Consider the set of consecutive states taken by X, in the shift register in Fig. 4.17 to be its
output sequence. Each nonzero 4-tuple occurs once in any 15-bit segment of this sequence, each nonzero
3-tuple occurs twice, etc. Adding a 15-bit segment of this sequence to another 15-bit segment bit by
bit mod 2 (exclusive OR) will give still another 15-bit segment. These sequences are used in instruments
to form random number generators and to generate bandpass noise; in radar for interplanetary obser-
vations; in communications systems to generate noise and encode or encrypt; and for many other
purposes. See Birkhoff and Bartee for more information and references.
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FIGURE 4.16

IC containers and flip-
flop and gate circuits.
{a) Dual inline and .
flat-pack IC con-
tainers. (6) Dual JK
flip-flop with com-
mon clock and resets
and separate sets. (c)
Dual UK flip-flop with
separate resets and
clocks. {(d) Dual four-
input NAND gates.
(e) Quadruplex two-
input NAND gates.
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FIGURE 4.1,

Shift register with
feedback.

four flip-flops to the first flip-flop’s inputs. This particular counter is started by
setting a 1 in X, and Os in X;, X5, and X,. The sequence of states taken is then

)

basic sequence which repeats

O-—OOO»———-—»—-O-—O»—-—OO-
~—-ooo-—-»—-—->—o»——o-—-.—-oo»—-o
OOOv—-'—‘v—‘-—O—-Ov—»—-OO-OO
OO—-—-—-—-O-—O-—»—OOr—OOO

Notice that this sequence contains.15 of the 16 possible 4-bit numbers that
might be taken by this circuit. '(Only the all-0 combination is excluded.) This is a
widely used sequence which occurs in many instruments and has many uses in
radar systems, sonar systems, coding encryption boxes, etc.

Quite often the sequence of states taken by a logic circuit is written in a



counter table. The counter table for the above sequence is

X, X, X, X,
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1
1 1 0 0
0 1 1 0
1 0 1 1
0 ’ 0 1
1 0 1 0
1 1 0 1
1 1 1 0
1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

In the counter table, the flip-flops’ names are first listed, followed by the starting
states. Then the successive states taken are listed in order, and the final line contains
the state preceding the starting state.

There is a straightforward technique for designing a logic circuit to realize a
counter table; this technique is developed in Sec. 4.12. For now we return to the
implementation of the counter in Fig. 4.17.

In order to implement_this counter, we require four flip-flops and a gate
circuit which will yield the )_(3)(4 + X;X,. As shown, this can be made with a
NAND-to-NAND gate network with three two-input NAND gates. An inverter is
also required. (A NAND gate can be used for this by connecting both inputs.)

One problem remains: We need to start the counter with X, in state 1 and
the other three flip-flops in state 0. Since DC RESET inputs are connected on the
flip-flops [see Fig. 4.16(b)], it is necessary to use a trick for flip-flop X,. This
simply involves renaming the J and X inputs and the two outputs so that J becomes
K, K becomes J, and the two output names are reversed. The DC RESET input
then becomes a DC SET input for the new (renamed) flip-flop.

Figure 4.18 shows the circuit as finally designed. Notice how X, differs in
connections from X, and X;. ’

The logic circuit in Fig. 4.18 could be implemented by using a printed-circuit
board to make the connections between IC containers. Or the connections could
be made by individual wires by using any of a number of interconnection boards
manufactured by various companies. Placing a 0 (ground) on the DC RESET input
sets the flip-flops to the desired starting conditions, and the circuit will then step
through the desired states.

There are several major lines of integrated circuits now being produced in
substantial quantities. Table 4.1 lists several basic lines and gives some of the
characteristics of each line. The first three IC lines in the table are called bipolar
logic because they utilize conventional transistors in the IC packages, and the next
three of the lines use what are called field-effect transistors (FETs) and are fabri-
cated by using metal-oxide semiconductor (MOS) technology. IIL is also bipolar

INTEGRATED
CIRCUITS
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FIGURE 4.18
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but nonstandard in operation. The bipolar logic lines are widely used for construct-
ing configurations on circuit boards which realize high-speed logic. Generally there
are not so many gates and flip-flops in a package using bipolar logic, but these
lines are fast and can be interconnected more readily than the MOS lines. The
reason is that the bipolar logic lines use more power (primarily more current) for
each gate or flip-flop and can, as a result, produce more current drive and therefore
drive long cables, long wires, and, in general, more other circuits.

Associated with each gate and flip-flop in a line of integrated circuits are data
concerning the gates or flip-flop’s ability to drive other circuits and be driven by
other circuits. Typically the manufacturer gives data concerning the delays through
the circuit, rise and fall times for output waveforms, the circuit’s ability to drive
other electrical loads, circuits, and long wires or cables. The manufacturer also
generally provides information on how many other inputs to gates of a similar type
a given gate can drive. In its simplest form, every input to every gate and flip-flop
is the same, and the manufacturer simply stipulates how many inputs can be con-
nected to a given output. Each input is then called a standard load, and an output
is said to be able to drive, for instance, eight standard loads. For some circuit
lines, different gates and flip-flop inputs present different loads, and so an input to
a particular kind of gate might have a number such as 2 or 3 associated with it and
an output drive number such as 12. Then the designer must see that the sum of
the input loads does not exceed the output drive number for a given output.
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Figure 4.19 shows a binary counter which is packaged in a single IC container
with 16 pins. The counter has several features:

1 The counter counts up (from 0000 to 1111) if U/D is a 1 and down (from
1111 to 0000) if U/D is a 0.

2  The four flip-flops can be ‘‘loaded’’ from the four DATA inputs by making
the LOAD line a 1 when a clock pulse occurs (the LOAD line is normally a 0, so
making it a 1 causes the upper DATA input values to be taken by the upper flip-
flops, etc.).

3  The counter can be gated on or off by the two ENABLE lines.

MEDIUM-, LARGE-, AND VERY LARGE-SCALE INTEGRATION

4.11 Most circuits are now fabricated by using the general technology of inte-
grated circuitry. In this case the transistors, diodes, resistors, and any other com-
ponents are fabricated together, by using solid-state physics techniques, in a single
container. In the most common technology, called monolithic integrated circuitry,
a single semiconductor wafer is processed by photomasking, etching, diffusions,
and other steps, thus producing a complete array of diodes, transistors, and resistors
already interconnected to form one or more logic gates or flip-flops.

When more than a few flip-flops or a few gates are packaged in a single
cuntainer, the process is called medium-scale integration (MSI). Notice that me-
dium-scale integration still refers to integrated circuits, except that even more
circuits are housed in a single container. There are no fixed specific rules, but
generally if more than 10 but less than 100 gates or flip-flops are in a single
package, the manufacturer will refer to it as MSI.

When more than 100 gates or flip-flops are manufactured in a smgle small
container, the process is called large-scale integration (LSI). Some ideas of the
complexity of arrays of this sort are found in later chapters where memories and
arithmetic-logic units consisting of thousands of flip-flops and gates in a single
package are studied.

Finally, there is very large-scale integration (VLSI) in which 50,000 to sev-
eral hundred thousand gates and flip-flops are packaged in a single package. The
memories and microprocessors in later chapters will illustrate this.

Despite the various levels of integration, the circuits are surprisingly similar
in principle, except that VLSI tends to use a technology based on MOS, while
MSI, LSI, and ‘‘conventional’’ integrated circuits use ‘‘conventional’” npn and
sometimes pnp transistors fabricated on silicon chips. There are good reasons for
this. MOS circuits require very small areas on a chip and use very little power,
which is quite important given the volume/complexity factor. However, conven-
tional bipolar circuits are faster and more readily interconnected. As a result, the
MOS technology is used more often for larger arrays which can be treated only as
complete single units rather than on a circuit-by-circuit basis. MOS is more likely
to be used in large memories and microprocessors, for example.

Figure 4.20(a) shows a typical MSI package containing a complete BCD
counter. This counter steps from 0 to 9 and then resets to 0 when X, (which is pin
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5) is connected to clock 2 (which is pin 6). The counter is stepped each time an
input clock waveform connected to clock 1 (pin 8) goes negative {on negative
edges). The counter can be reset to the all Os by connecting a 0 to the reset line
(pin 13). Data from four input wires connected to Y,, Y,, Y3, and ¥, will be loaded
into flip-flops X, X,, X3, and X, respectively, if the LOAD input is pulled down

toa0. (It is normally a 1.)
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An example of gate networks in MSI packages is shown in Fig. 4.20(b),
which shows a seven-segment decoder. When decimal numbers are to be read from
a digital calculator, instrument, microcomputer, etc., display devices using light-
emitting diodes (LEDs) or liquid crystals are often used. Each digit of the display
is formed from seven segments, each consisting of one light-emitting diode or
crystal which can be turned on or off. A typical arrangement is shown in Fig.
4.20(c) which assigns the letters a through g to the segments. To make the digit
5, for example, segments a, f, g, ¢, and d are turned on. The set of digits as
formed by these segments is shown in Fig. 4.20(d).

The seven-segment decoder in Fig. 4.20(b) can be connected to the outputs
of the four flip-flops in the BCD counter in (a) by connecting the X, X,, X;, and
X, outputs from (a) to the X,, X,, X;, and X, inputs of (b). If the seven outputs a
through f of Fig. 4.20(b) are then connected to a decimal digital display device, a
counter with a decimal digit display, such as those in the familiar calculator, will
be formed. ,

The BCD counter in Fig. 4.20(a) can be extended to several digits by con-
necting the X, output from one digit to the clock 1 input of the next-highest-order
digit in the counter.

The seven-segment decoder in Fig. 4.20(b) has the ability to blank leading
zeros in a multidigit display, which is commonly done on calculators. Consider
that a multistage BCD counter has been connected to several seven-segment de-
coders with one decoder per BCD counter stage. If the ripple blanking output
(RBO) of each seven-segment decoder is connected to the ripple blanking input
(RBI) of the seven-segment decoder of the next-higher-order digit in the counter,
and if the ripple blanking input of the most significant digit’s seven-segment de-
coder is connected to a 0 input, then a blanking circuit will be formed. Then, for
instance, in a four-stage counter the number 0014 will have the leading two Os
turned off, or blanked; the number 0005 will be displayed as simply S, with the 0
displays not turned on, etc. In effect, the circuit tests for a O value at its input. If
the value is 0 and all the digits to its left are 0, then it turns off all seven segments
and generates a blanking signal for the next rightmost digit’s light driver. The light
test (LT) input can be used to test all seven segments simultaneously. Notice that
making the light test input a 0 will cause all seven segments to go on.

In the MSI products of some manufacturers, both a four-stage BCD counter
and a seven-segment decoder are placed in the same package complete with a
blanking input and output for each digit. This gives some feeling for the more
complex MSI packages.

COUNTER DESIGN

*4.12° The design of a counter to sequence through a given set of states is
straightforward, using the technique to be shown. First, a counter table is made up
that lists the states to be taken. Assume that we wish a counter using three flip-
flops to sequence as follows:

*Sections marked with asterisks can be omitted on a first reading without loss of continuity.



A B c
Starting state —> 0 -0 0
1 1 1
: “I) (1) this repeats
0 0 1
0 1 0
0 0 0
1 1 1
1 0 1
° ° °
° ° °

This table shows that if the counter is in the state A = 0, B = 0, C = 0 and
a clock pulse (edge) is applied, then the counter is to step to A=18B-=1,
C = 1. As another example, if A = 0, B = 1, and C = 0 and a clock pulse
occurs, then the counter is to step to A = 0, B = 0, C = 0. As can be seen, the
counter ‘‘cycles’ because after taking the state 010 it returns to 000 and then goes
to 111, as before. If clock pulses continue, the counter will cycle through the six
different states shown indefinitely.

We use RS flip-flops for our first design. Now each flip-flop has two inputs,
an R input and an S input. So we give the R input to A the name AF, the S input
to A the name AS, the R input to B the name B¥, and so on through C°.

The problem is now to derive boolean algebra expressions for each of the
six inputs to the flip-flops. To do this, we place the state table in a counter design
table, listing the three flip-flops and their states and also listing the six inputs to
the flip-flops. This is shown in Fig. 4.21(a).

The values for A%, AS, BR, BS, CR, CS are then filled in by using the following
rule.

DESIGN RULE

%
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FIGURE 4.21
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As an example, consider flip-flop A in Fig. 4.21(a). The flip-flop has value
0 in the first row and changes to a 1 in the second row. We therefore place a 1 in
A% in row 1 and a 0 in A in row 1. In row 2, A has value 1 and remains a 1 in
row 3. So we fill in a d in AS and a 0 in AR, .

The reasoning behind these rules is as follows: Suppose that flip-flop A is in
the O state and should stay in the O state when the next clock pulse is applied. The
§ input must then be 0, and the R input can be a 1 or a 0. Thus we must have 0
at A%, but can place a d (for don’t-care) at the A® input.



If A is a 0 and should change to a 1, however, the S input to A must be a 1 169
and the R input a O when the next clock pulse is applied. So a 1 is placed in AS
and 0 in A,
It is instructive to examine several of the entries in the counter table in Fig.
4.21(a) to see how this rule applies.
"~ Our goal is to generate the flip-flop inputs (A%, A®, etc.) in a given row so
that when the counter is in the state in that row, each input will take the value
listed. Then the next clock pulse will cause the counter to step to the state in the
next row below in the counter table.
The design of the counter now progresses as a boolean algebra expression is  COUNTER DESIGNS
formed from this table for A%, AS, B, BS, C®, and C%, the inputs to the flip-flops,
and then each expression is minimized. This is shown in Fig. 4.21(b), which gives
the maps for the flip-flops” inputs. Notice that any unused counter states can be
included as d’s in the map because the counter never uses them. The minimal
expressions are shown beside each map.
The final step is to draw the block diagram for the counter using the minimal
expressions. The final design for this counter is shown in Fig. 4.22.
Now suppose that we desire to design the above counter, using JK flip-flops.
The procedure will be basically the same, except that the rules for filling in the
counter design using JX flip-flops will be different.

FIGURE 4.22
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170 The inputs will now be A’, AX, B/, BX, ¢/, and CX. The rules for JK flip-
flops ate as follows:

DESIGN RULE

LOGIC DESIGN

The reasoning behind the above rules is as follows: Suppose that a given flip-
flop, say A4, is in the O state and should stay in the same state when the next clock
pulse occurs. The input AKX must be a 0 at that time, but A’ can be either a 0 at
that time or a 1, so that A’ input is essentially a d (or don’t-care) input. If A must
go from a 0 to a 1, however, the AX input must be a 1, but the A’ input can be
either a 0 or a 1 (since the flip-flop will change states if both inputs are 1s). Notice
that there are more d’s in the rules for JK flip-flops than for RS flip-flops because
of the ability of the flip-flops to change states when both inputs are 1s.

The maps for each input to the flip-flops A7, AX, B/, BX, ¢/, and C¥ are
drawn as before, the expression for each flip-flop’s input is minimized, and the
block diagram for the counter is then drawn as in Fig. 4.23. Notice that fewer
gates are used for the counter in Fig. 4.23 than for that in Fig. 4.22. This is because
of the additional d’s in the maps, and it will generally, although not always, be
the case. (Sometimes the RS and JX designs will be the same; JK flip-flops cannot
require more gates for a given counter sequence.)

STATE DIAGRAMS AND STATE TABLES

4.13 A set of interconnected gates with inputs and outputs is called a combi-
national network. The outputs from a combinational network at a given time are
completely determined by the inputs at that time. As a result, the function of a
combinational network can be described by using a table of combinations that
simply lists the input-output values.

When flip-flops are combined with gates, a more complicated situation arises
because the flip-flops progress through various states—depending on inputs—and
the output can depend on the previous as well as the preceding inputs.
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172 To analyze and design with both flip-flops and gates, several techniques have
been developed. The best known involves the use of state diagrams and state
tables, which are the subject of this section.

A simple design problem which requires flip-flops as well as gates is the
design of a binary sequence detector. A binary sequence detector has a single input
line that it examines. The sequence detector looks for some specified sequence of
inputs on this input line and outputs a | when this sequence is found.® An example
of a specified sequence would be three consecutive Is. In this case, if the sequence
detector is present with the inputs 1001011101, the sequence detector will output

LOGIC DESIGN a 0 at all times except immediately following the third 1, when it will output a 1.
This is shown in Fig. 4.24. The sequence detector is like a lock which unlocks
(outputs a 1) only when the combination (in this case, three consecutive 1s) appears.
Sequence detectors can be designed to detect any specified sequence such as 11011
or 1110101 or any other.

Figure 4.25(a) shows a state diagram which describes a binary sequence
detector that detects three consecutive Is. A state diagram is formed from what
mathematicians call a directed graph. State diagrams have nodes, which are the
circles in Fig. 4.25(a), and links, which are the curved lines with arrowheads at
one end. There are four nodes in Fig. 4.25(a) and eight links.

The nodes in a state diagram correspond to flip-flop states in the final design
and so are also called states and given names. For Fig. 4.25(a), the states are
named A, B, C, and D. To the right of each state name there is a comma, followed
by the output value for that state. This corresponds to the output from the detector
in Fig. 4.24. For this diagram, if the present state is A, the output is 0; if the state
is D, the output is 1; etc. Each link of the graph is labeled with the input values
X = 1orX = 0. These links show how transitions are made from state to state.
This X input in Fig. 4.25(a) corresponds to the X input in Fig. 4.24.

The interpretation of the state diagram corresponding to Fig. 4.25(a) is as
follows. The machine is started in state A, at which time the output is a 0. If the
input X is O when the first clock pulse arrives, the detector stays in state A and -
continues to output a 0. This is shown by the loop connected to A and. labeled
X =0.

*The sequence of 1s and Os on the input line occurs in time. and each 1 and O is generally clocked into
the flip-flops.

FIGURE 4.24
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If the detector is in state A and a 1 is input (when the clock pulse arrives),
the system goes to state B and continues to output a 0.

With the detector in state B, if a O is input, the detector goes back to state
A and continues to output a 0. If a 1 is input with the detector in state B, the
detector goes to C and continues to output a 0.

This analysis of the detector’s operation can be continued. The important
thing is that if the detector is in state C and an input of 1 is given, the detector
goes to state D and outputs a 1. If more 1s are input with the machine in state D,
it remains in that state and continues to output a 1. If a 0 is input, the detector
returns to A.

As can be seen, the detector outputs a O until three successive s are input,
at which time it outputs a 1 and this 1 output is continued until a 0 is input.

Figure 4.25(b) is a state table which represents the same sequence detector
as the state diagram in Fig. 4.25(a). There are three major columns in the table:
Present state, Output, and Next state. The interpretation of this table is as follows.
If the detector is in present state A and a O is input, the next state will be A and a
0 will be output. If the system is in state A and a | is input, the detector will go
to state B and a 0 will be output while in that state.

If the detector is in state A and two successive s are input, the resulting
state will be C. If another 1 is input, the detector will go to the D state and a 1
will be output. While in D, the 1 inputs will keep the system in D and the outputs
will continue to be 1s until a O is input; then the next state will be A and a 0 will
be output. The state diagram in Fig. 4.25(a) and the state table in Fig. 4.25(b)
should be compared to see how they describe the same operations.

Having described the sequence detector by using a state diagram and a state
table, we now make a design using flip-flops and gates which will realize the state
diagram and table and which can be constructed by using integrated circuits.

Since flip-flops are to take states corresponding to states A, B, C, and D in
the state diagram and table, two flip-flops will be required to take the four states.
We can make a preliminary drawing of the layout for the sequence detector. Figure
4.25(c) shows the overall layout with two flip-flops, a set of gates, and an input
X and an output Z. What remains is to design the gate network in Fig. 4.25(c).
First, however, it is necessary to assign values to the flip-flops for each of states
A, B. C, and D.

A natural assignment of flip-flop values is to let 9, = 0, O, = 0 represent
state A; 0, = 0, @, = | represent B; @, = 1, Q, = O represent C; and @, =
1, Q, = 1 represent D. Replacing the A, B, C, and D in Fig. 4.25(b) with this
assignment of values leads to the table in Fig. 4.25(d), which is otherwise the same
as Fig. 4.25(b).

It is now possible to design the actual gate structure. There are three inputs
to the gating network: Q, and Q,, the flip-flop outputs, and the X input. There are
also three outputs from the gate network: the D inputs to Q, and Q, and the Z
output. Since there are three outputs, three maps are required. The maps for D,
and D, (the inputs to Q, and Q) will have three inputs, Q,, Q,, and X. However,
the map for the output has only two inputs, 0, and Q,, since the output Z is
determined by the present state of the system and not the current input.

The maps for the system in Fig. 4.25(a) through (d) are shown in Fig.
4.25(e), and the complete design is seen in Fig. 4.25(f). A RESET has been added
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FIGURE 4.25

which can be used to start the machine. The operation of this design should be
checked by noting the resulting states of the flip-flops for several sequences of X
inputs. Figure 4.25(g) shows a set of waveforms.

The design in Fig. 4.25(f) is an example of a state machine.” The same
procedure involving state diagrams and state tables can be used to design many
things, including interfaces and sections of a computer. In general, a state machine
is simply a collection of interconnected flip-flops and gates with a set of inputs and

"State machines are often called finite state machines in computer science literature, but computer
designs and IC manufacturers now generally use the shorter form, state machine.

(a) State diagram. (b)
State table. (c) Circuit
for (a) and (b). (d)
State table with as-
signed values to state
flip-flops. (e) Maps
for design. (f) Gates
and flip-flops for se-
quence detector. (g)
Waveforms for de-
sign.



176 outputs. This is a very general concept, and in following section we treat it in more
detail.

DESIGN OF A SEQUENTIAL MAGNITUDE COMPARATOR

4.14 In the preceding section we described the design of a state machine with
a single input and output. The same technique can be used to design a state machine
with several inputs and outputs.
LOGIC DESIGN Consider the design of a sequential comparator which is to determine which
of twe binary numbers A and B, having the same number of bits, is larger. The
most significant bits of each number are input to the comparator, followed by the
second most significant bits and then the next most significant bits until finally the
least significant bits are presented. (The numbers A and B could be stored in two
shift registers.) There are to be two outputs, Z, and Z,. If A > B, then Z, is to be
al;ifA<B thenZ,istobea l:and if A = B, then both Z, and Z, are to be
Os. Figure 4.26 shows a block diagram of the comparator and a set of waveforms
for inputs and outputs.
The design of this comparator will be made by first developing a state diagram.
The most significant bits of A and B are to be presented first. If the most
significant bit of A is 1 and of B is 0, then A > B. So we can draw a starting node
K and a link to a state L with the input value 10 (for A = 1, B = 0); see Fig.
4.27(a). The output for the starting state will be Z, = 0, Z, = 0, or simply 00;
and the output for state L will be Z, = 1 and Z, = 0.
If the most significant bit of A is O and of B is 1, then A < B and so a third
Sequential compara-  state M is added with a link with inputs AB = 01 going to it from state K.
tor and waveforms. If the machine is in state L, then no sequence of inputs can change the fact
(a) Block diagram. (b) 5t 4 > B. S0 a loop with 00, 01, 10, 11 is added to L, indicating it will stay in
Waveforms for two . .. . ..
7-bit binary numbers that state regardless of the inputs. Similarly, if the comparator is in state M, then
A = 0101011 and A < B and no sequence of inputs can change this relation. Thus 00, 01, 10, and
B = 0100100. 11 are placed on a loop leading from M to M.

FIGURE 4.26
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(Continued)

If the most significant bits of A and B are the same, then the numbers can
be equal or either A or B can be larger. So for inputs of A = O and B = 0, or
A = 1 and B = 1, the comparator has next state K and outputs Z, Z, = 00.
We now see that this process will continue for the next significant bits used
and all those which follow. So the state diagram is complete. As an example, if
A,A\A, = 101, then A has value decimal S and if B,B,B, = 110, then B has value
decimal 6, and the state diagram will output an 01 after the second bits arrive.

A state table can be made for the state diagram in Fig. 4.27(a). This table
is shown in Fig. 4.27(b).

To design an actual logic network to realize the state table and state diagram
for Fig. 4.27(a) and (b), it is necessary to use flip-flops. Since there are three
states, two flip-flops, Q, and Q,, will be used. A natural assignment of states to
0, and Q, is to let them have the same state as the outputs Z, and Z,. Then no
gates are required to produce Z, and Z, since the O, and Q, outputs can be used
for this purpose.

The resulting state table is shown in Fig. 4.27(c). The overall block diagram
for the design is shown in Fig. 4.27(d). Only the gating network for the two D
inputs to @, and Q, needs to be designed since Z, and Z, are simply outputs from
Q, and Q,. The maps for these two inputs are shown in Fig. 4.27(¢), and the final
design is seen in Fig. 4.27(f).

COMMENTS—MEALY MACHINES

4.15 What have here been called state machines are also called sequential ma-
chines, sequential systems, sequential circuits, and finite-state machines. Many
results in the theory of computing about what can and cannot be computed are
concerned with what finite-state machines can compute. A finite-state machine
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which can read a tape and write on it is called a Turing machine. If the supply of
tape for this Turing machine is limitless (the tape is potentially infinite in length),
there are many interesting results concerning what the machine can compute, some
of which are due to Turing, a brilliant early 20th-century mathematician. The
references discuss these results.

There are several variations on the state diagrams and design procedures
which have been described. When the outputs are determined by only the state of
the flip-flops, as in the two previous designs, the machine is called a Moore ma-
chine, in honor of Edward Moore. When the outputs are determined by the input
value as well as the internal state, the machine is called a Mealy machine. Figure
4.28 shows a Mealy machine state diagram, state table, block diagram, and some

FIGURE 4.28
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(c) Design for Mealy
version of sequence
detector. (d) Wave-
forms for Mealy and
Moore machine de-
signs.

179



180

LOGIC DESIGN

FIGURE 4.29

Clock

Block diagram of a
state machine.

output waveforms for a machine which is a sequential detector that looks for three
Is (as in Fig. 4.24). Note the output values are on the links, not the nodes, in Fig.
4.28(a).

Occasionally it is possible to reduce the number of states in a first design.
For completely specified tables, a technique for doing this was discovered by
Edward Moore. If not all next states and outputs are specified, the problem is much
harder, but Steve Unger solved this problem.®

The assignment of values to the flip-flops in the final design can influence
the number of gates used, but no one knows how to make the best assignment
short of trying every possible assignment. This is called the assignment problem.

PROGRAMMABLE ARRAYS OF LOGIC

*4.16 Integrated-circuit manufacturers have found natural ways to implement
layouts for state machines on IC chips. The regular shape of the state machine
with its gating array preceding the flip-tiops makes for a rectangular and ordered

8Edward Moore did his work at Bell Laboratories ana George Mealy at IBM. Both have changed jobs
but are still around, as is Steve Unger who is at Colunihia Detailed descriptions of their work can be
found in Birkhoff and Bartee or in Ed McClusk~"s book »n switching theory.
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design for an integrated circuit. As a result, chips are available which can be used
to implement state machine designs on a single chip (in a single IC package).
The basic iaca is to present the designer with a layout for a design which is
sufficiently flexible that most actual designs can be fabricated on this layout.
Figure 4.29 shows the basic block diagram for a state machine. What is
needed is a set of flip-flops and a set of gates so that this general structure can be
realized for many different designs. Figure 4.30 shows a programmable array of 181
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logic cells such that a state machine is formed by forming AND gates at the
junctions of the vertical lines and connecting the horizontal lines to the OR gates.
The particular array shown has three inputs, three flip-flops, and outputs from the
flip-flops. The AND-to-OR gate networks are formed in the same way as for the
PAL in Fig. 3.44; in fact, this particular array is called a PAL.

Figure 4.31 shows the design using the PAL in Fig. 4.30 for the sequence
detector in Fig. 4.25. Since there are three flip-flops and three inputs in Fig. 4.31,
only part of the logic in the figure is used. The idea, however, is that by working
from a framework such as Fig. 4.31, most designs can be realized. Thus the
manufacturer volume for the chip will be great enough that the cost per chip will
be low enough to cost less than assembling a given design from several IC packages
with fewer gates and flip-flops per package.

The actual IC packages on the market at present have several hundred gates



and flip-flops per package. Sometimes there are several arrays in a single package
and, therefore, the possibility to form several machines in a single IC container.
Figure 4.32 shows a PAL layout for a state machine from a particular manufacturer.

The gating connection required for a particular design using the layout in
Fig. 4.32 can be implemented in two ways: (1) The manufacturer works from a
design submitted by the designer, in which case a particular mask or pattern is
made for the design and is used for each chip manufactured. (2) The,chip can be
a user-programmable chip in which every possibie connection is made and un-
desired connections are destroyed by the user (using high currents) blowing fuses
in the undesired connections.’

Arrays of logic cells such as shown in Fig. 4.32 are becoming increasingly
popular and frequently are used in commercial and laboratory equipment. Such
semicustom fabrication processes are very popular in IC manufacture because of
the very high cost of designing and manufacturing completely original, or custom,
chips.

SUMMARY

4.17 Flip-flop operation was described along with the operation of the clocks
used to initiate operations in computers. Often used flip-flops are the RS, JK, and
D flip-flops; each was discussed. Latches were introduced.

Binary counters perform many useful functions in digital machines, and these
were discussed in some detail. Also, BCD counters were covered.

The varjgus classes of integrated circuits—medium-scale, large-scale, very
large-scale—were described and the circuit lines used in IC packages listed along
with their characteristics. A design for a shift register with feedback was imple-
mented by using ICs from a very popular circuit line, TTL.

Sometimes flip-flops are made from gates. We detailed how this can be done
for several kinds of fiip-flops, including the JK edge-triggered flip-flop.

A counter which will count through a given sequence of states can be de-
signed by using the procedure which was presented along with several example
designs.

The design and analysis of state machines are facilitated by the use of state
tables and state diagrams. A design procedure which can B¢-used to implement a
given state table or state diagram was presented.

Some integrated circuits are now being manufactured which are widely used
to implement state machine designs because of their particular layout. These ICs
enable designers to implement a given design by programming chips (1) by re-
moving undesired connections by blowing fuses in the connections or (2) by sub-
mitting a design to a manufacturer, who then implements the design (using IC
metallization masks which result in the desired connections being made). This class
of ICs has 2 much higher packing density than IC packages with a few gates or
flip-flops per package, costs are lower than for an original design using custom IC
packages.

°This is called programming the chip. There are instruments made which allow the introduction of a
particular design into a chip by blowing the selected fuses.
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FIGURE 4.32
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Logic diagram PAL16R6
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QUESTIONS

4.1 Draw a set of waveforms for S and R and X and X (as in Fig. 4.2) so that
the flip-flop in Fig. 4.1 will have the output signals 0011010 on the output line.

4.2 [f the AND gate connected to the R input of X, in Fig. 4.3 fails so that its
output is always 1, we would expect, after a few transfers, that X, would always
be in what state? Why?

4.3 Draw a set of waveforms for S and R (as in Fig. 4.2) so that the flip-flop
in Fig. 4.1 will have the output signals 101110001 on the X output line.

4.4 If the X output of flip-flop X is connected to an inverter, the inverter's
output will always be the same as the X output of the flip-flop. True or faise? Why?

4.5 Draw a set of waveforms as in Fig. 4.5(d) for the flip-flop in Fig. 4.5(b)
so that the flip-flop will have the output signals 0010110 on its Y output line.

4.6 In Fig. 4.10 if flip-flop X, ‘‘sticks’’ (that is, fails) in its O state, will X,
have a 1 output after (a) clock pulse 1, (b) clock pulse 2, (c) clock pulse 3 and
for each clock pulse thereafter?

4.7 Draw an input waveform as in Fig. 4.10 so that X; will have the output
signal 010011010 if X,, X,, and X, are started in the O state.

4.8 Draw a set of waveforms as in Fig. 4.5(c) for the flip-flop in Fig. 4.5(a)
so that the flip-flop will have the output signals 10111001 on its X output line.

-4.9  The binary counter in Fig. 4.11 uses flip-flops which act on positive tran-
- sitions. Draw a block diagram of a binary counter with bubbles on the clock inputs

(that is, with flip-flops which act on negative-going clock inputs).

4.10 If the X, line (the output of X5) is connected to the input line in Fig. 4.10,
a ring counter is formed. If this circuit is started with X, = 0, X, = 1, and
X; = 1, draw the waveform at X,, X,, and Xj; for six clock pulses.

4.11 Redraw Fig. 4.11 as it is, but place bubbles on each clock input to X, X,,
and X, [that is, make the same drawing, but use the flip-flop in Fig. 4.5(b) instead
of that in Fig. 4.5(a)}. Redraw the waveforms in Fig. 4.11 for this circuit.

4.12 Does the counter in Question 4.11 count up or down?

4.13 Make a single change in Fig. 4.11 by connecting the output of flip-flop X,
to the clock input of X, instead of the X, output of X,. Now redraw the waveforms
in Fig. 4.11 for this changed configuration.

4.14 After answering Question 4.13, using the flip-flop in Fig. 4.5(a), design a
counter that counts as follows:
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0 0 0

0 1 1

0 1 0

1 0 1

1. 0 0

1 1 1

1 1 0

0 0 1

0 0 0

0 1 1

0 1 0 QUESTIONS -
1 0 1

4.15 After answering Question 4.13, using only the flip-flop in Fig. 4.5(a),
design a counter that counts as follows:

3
Ra
x

P2 OO0 = - =D
Y o Y = RN . W o JO SNy )
- 0L 0—20—_0-=0

This counter counts down. Figure 4.11 counts up.

4.16 For Fig. 4.14(b) draw UP ENABLE, DOWN ENABLE, and clock wave-
forms so that the counter starts at 000 and counts as follows:

X, X, X,
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
0 1 1
0 1 0
0 1 1

4.17 In Fig. 4.14(a), when the ENABLE line is a 1, the counter counts at the
occurrence of a negative-going clock edge. Draw the output waveforms for FFO,
FF1, and FF2 for these waveforms. Start the flip-flops at 0.
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FIGURE Q4.17

Clock

Enable mm——

4.18 Draw a clock waveform and waveforms for the output of the AND gate
connected to the S input of X,. the R input of X,, and the 1 output of X,. X,, and
X, for Fig. 4.12.

4.19 Suppose that the AND gate in Fig. 4.15(a) fails, so that its output is always
a 0. Write the sequencs or show the waveform through which this counter will go
in response to clock signals.

4.20 Suppose that the AND gate’s output in Fig. 4.15(a) is connected to the K

input of X, instead of the J input. How will the computer count?

4.21 For Fig. 4.15(b), the carry-out from block I to block 2 goes from 1 to O
every clock pulses. The carry-out from block 3 to block 4 goes from 1 to
0 every clock pulses.

4.22 (a) If we replace block 2 in Fig. 4.15(b) with the four-stage ripple counter
in Fig. 4.14(a), using the 1 output of FF3 in that counter as the carry-out line, the
carry-out line from block 2 will go from I to O after how many clock pulses?

(b) For the configuration in (a), after how many clock pulses will the carry-
out from block 2 go from 0 to 1?

4.23 Using the circuits in Fig. 4.16, design a gated-clocked binary counter.
4.24 Design a BCD counter using the flip-flops in Fig. 4.16.

4.25 Using the circuits in Fig. 4.16, design a gating network with inputs A, B,
and C which will have output 1 when ABC or ABC are ls.

4.26 Using the circuits in Fig. 4.16, design a BCD counter.

4.27 Using the circuits in Fig. 4.16, design a gate network with inputs A, B,
and C and output AB + AC.

4.28 Does a four-input NAND gate, as in Fig. 4.16, with the third input held at
1, act as a three-input gate would if only two inputs were used? Explain your
answer.,

4.29 Design the counter in Fig. 4.12, using the blocks in Fig. 4.16.

4.30 Give the states of the ﬂip-vﬂo’ps in the following circuit after each of
the first five clock signals (pulses) are applied. The circuit is started in the state
A =04, =04, =1
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FIGURE 04.30

4.31 Redesign the following circuit, using only RS flip-flops and NOR gates:

FIGURE Q4.31
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FIGURE Q4.32

FIGURE Q4.33

4.32 The gate block in the following circuit is an ‘‘equal to’’ combinational
network realizing the boolean function X,X, + X,X,. If this set of three flip-flops
is started in X; = 1, X, = 0, and X; = 0, what will the sequence of internal
states be? As a start, the first three states can be listed as follows:

X1 X2 X3

1 0 0

1 1 0 after first clock puise

0 1 1 after second clock pulse

(you are to continue this list)

4.33 The following circuit is started in C; = 1 and C, = 0. The circuit divides
the number of positive-going input edges (positive pulses) by what number? (That
is, every input pulses the output will return to 0.) Justify your answer.

4.34 In Fig. 4.9, write Os and 1s for all gate inputs and outputs when the clock
inputis 1, Risa l, Sis a I, and the flip-fiop is in.the 1 state.

4.35 In Fig. 4.9, why are E and F enabled at a lower level than A and B?

4.36 In Fig. 4.9, if the feedback connection from the C NAND gate output to
the input of the D NAND gate is broken (open), in what state will we probably
find the flip-flop?

.
4.37 Using your result from Question 4.34, explain how the flip-flop in Fig. 4.9
operates when R and § are Os and a negative edge appears.



4.38 The following sequence is to be realized by a counter consisting of three 191
RS flip-flops. Use AND and OR gates in your design.

A1 A2 A3
0 0 0 starting state
0 1 0
Sequence repeats after this segment 0 1 1
0 0 1
1 0 0
1 1 0
0 0 0

QUESTIONS

4.39 Design a counter, using only JK flip-flops, AND gates, and OR gates which
counts in the following sequence:

this repeats

O, 000-=2000
OO =2 =000
OO0 —_2000-—200C

4.40 Design a counter, using three JK flip-flops X,, X,, and X, and whatever
gates you would like, which counts as follows:

X1 X2 x3

0 0 0 starting state

0 1 1 after first clock pulse

0 1 0 after second clock pulse
1 1 1 after third clock pulse

1 0 1 after fourth clock pulse
0 0 0 after fifth clock pulse

0 1 1

0 1 0

4.41 The following sequence is to be realized by a counter consisting of three
JK flip-flops. Use AND and OR gates in your design.

A, A, A,

starting state

Sequence repeats after this segment

O==20000
O =200 =20

0
1
0
1
1
0
0

4.42 If the S and R inputs to Fig. 4.7 are both made Os and the S is made a 1
followed by R, what will be the resulting state of the flip-flop?
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FIGURE Q4.48

FIGURE Q4.49

4.43 The NAND gate flip-flop in Fig. 4.7 will have what outputs on the 0 and
1 lines if both SET and RESET are made 0s?

4.44 Design a counter, using three JK flip-flops X,. X, and X; and whatever
gates you would like, which counts as follows:

X, X, X3

0 0 1 starting state

0 1 1 after first clock puise

0 1 0 after second clock pulse
1 1 1 after third clock pulse

1 0 1 after fourth clock pulse
0 0 1 after fifth clock pulse

0 1 1

0 1 0

4.45 The rules for designing counters using JK and RS flip-flops have been given.
Derive the rules for designing a counter using D flip-flops.

4.46 Design a counter using D flip-flops which counts in the same manner as
the example given for JK and RS flip-flops.

4.47 Design a binary sequence detector which recognizes four consecutive 1s.
Display the state diagram, state table, and final design.

4.48 Using the PAL in Fig. 4.30, design a state machine which realizes this state
diagram:

4.50 Design a two-input magnitude comparator, but use the Mealy configuration
instead of the Moore configuration shown in Figure 4.28.



Tht ARITAMETIC-LGGIC UNIT

The arithmetic-logic unit (ALU) is the section of the computer that performs arith-
metic and logical operations on the data. This section of the machine can be
relatively small, consisting of as little as a part of a large-scale integration (LSI)
chip, or, for large ‘‘number crunchers’’ (scientific-oriented computers), it can con-
sist of a considerable array of high-speed logic components. Despite the variations
in size and complexity, the small machines perform their arithmetic and logical
operations using the same principles as the large machines. What changes is the
speed of the logic gates and flip-flops used; also, special techniques are used for
speeding up operations and performing several operations in parallel.

Although many functions can be performed by the ALUs of present-day
machines, the basic arithmetic operations—addition, subtraction, multiplication,
and division—continue to be ‘’bread-and-butter’’ operations. Even the literature
gives evidence of the fundamental nature of these operations, for when a new
machine is described, the times required for addition and multiplication are always
included as significant features. Accordingly, this chapter first describes the means
by which a computer adds, subtracts, multiplies, and divides. Other basic oper-
ations, such as shifting, logical multiplication, and logical addition, are then described.

Remember that the control unit directs the operation of the ALU. What the
ALU does is to add, subtract, shift, etc., when it is provided with the correct
sequence of input signals. It is up to the control element to provide these signals,
and it is the function of the memory units to provide the arithmetic element with
the information that is to be used. These sections of the computer are discussed in
Chaps. 6 and 9. '
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OBJECTIVES

1 Most arithmetic operations are based on the use of a full-adder module which
can add pairs of binary bits and initiate and propagate any carries that arise. The
full-adder is explained, and several examples are given, including several popular
IC adders.

2  The addition and subtraction of binary numbers can be effected by using
adders and gates correctly connected. The layouts for 2s complement and 1s com-
plement addition-subtraction units are shown and the general principles explained.

3  Binary-coded-decimal (BCD) adders and subtracters use a different layout
than straight binary, and this subject is explained. Serial-parallel addition and
subtraction using only a single BCD adder is often used in computers, and this
subject is explained and examples are shown.

4  Multiplication and division are generally performed using three flip-flop reg-
isters and a sequence of addition, subtraction, and shift operations. The procedures
for the operations are explained and examples given. High-speed multiplication
using gate networks is covered also.

5  Arithmetic-logic units which can add, subtract, and perform logical oper-
ations form the backbone for the arithmetic and control operations in computers.
The organization of these units is explained.

6  To perform scientific calculations, the floating-point number system is often
used, particularly when high-level languages are written by the programmer. The
structure of floating-point number systems is shown, and several example systems
are explained.

CONSTRUCTION OF THE ALU

5.1 The information handled in a computer is generally divided into ‘‘words,”’
each consisting of a fixed number of bits.! For instance, the words handled by a
given binary machine may be 32 bits in length. In this case, the ALU would have
to be capable of adding, subtracting, etc., words 32 bits in length. The operands
used are supplied to the ALU, and the control element directs the operations that
are performed. If addition is to be performed, the addend and augend will be
supplied to the ALU which must add the numbers and then, at least temporarily,
store the results (sum).

To introduce several concepts, let us consider the construction of a typical
computer ALU. The storage devices will consist of a set of flip-flop registers, each
of which consists of one or more flip-flops. For convenience, the various registers
of the ALU are generally given names such as X register, B register, MQ register,
etc., and the flip-flops are then given the same names, so that the X register would
contain flip-flops X, X,, X3, etc.

Many computers (especially microprocessors) have a register called an ac-
cumulator which is the principal register for arithmetic and logical operations. This

'Some computers also provide the ability to handle variable-length operands.



register stores the result of each arithmetic or logical operation, and gating circuitry
is attached to the register so that the necessary operations can be performed on its
contents and any other registers involved.

An accumulator is a basic storage register of the arithmetic element. -If the
machine is instructed to load the accumulator, the control element will first clear
the accumulator of whatever may have been stored in it and then put the operand
selected in storage into the accumulator register. If the computer is instructed to
add, the number stored in the accumulator will represent the augend. Then the
addend will be located in memory, and the computer’s circuitry will add this
number (the addend) to the number previously stored in the accumulator (the au-
gend) and store the sum in the accumulator. Notice that the original augend will
no longer be stored in the accumulator after the addition. Furthermore, the sum
may either remain in the accumulator or be transferred to memory, depending on
the type of computer. In this chapter we deal only with the processes of adding,
subtracting, etc., and not the process of locating the number to be added in memory
or the transferring of numbers to memory. These operations are covered in the
following chapters.

There is now a tendency for computers to have more than one accumulator.
When a computer has more than one, they are often named, for example, accu-
mulator A and accumulator B (as in the 6800 microprocessor) or ACC1, ACC2,
etc. (as in the Data General Corporation computers). When the number of registers
provided to hold operands becomes larger than four, however, the registers are
often called general registers, and individual registers are given names and numbers
such as general register 4, general register 8, etc.

INTEGER REPRESENTATION

5.2 The numbers used in digital machines must be represented by using such
storage devices as flip-flops. The most direct number representation system for
binary-valued storage devices is an integer representation system. Figure 5.1(a)
shows a register of four flip-flops, X3, X,, X,, and X, used to store numbers.
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INTEGER
REPRESENTATION

FIGURE 5.1

[ J
Binary point
Value in register = X, 23 + X, 22 + X,- 21 + X,2°  goes here

(a)

[ ]
Binary point
goes here
Sign bit (b)

Representation sys-
tems. (a) integer rep-
resentation. (b) Sign-
plus-magnitude
system.
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Simply writing the values or states of the flip-flops gives the number in integer
form. Thus X5 = 1, X, = 1, X, = 0, X, = 0 gives 1100, or decimal 12, whereas
X;3=0,X,=1,X, =0,X, = 1 gives 0101, or decimal 5.

It is generally necessary to represent both positive and negative numbers; so
an additional bit is required, called the sign bir. This is generally placed to the left
of the magnitude bits. In Fig. 5.1(b) X, is the sign bit, and so X5, X5, X, and X,
will give the magnitude. A 0 in X, means that the number is positive, and a 1 in
X4 means that the number is negative (this is the usual convention).? So X, =0,
X; = 1,X,=1,X, = 0,and X, = 1 gives positive 1101, or + 13 in decimal;
andX, = 1,X; =1,X, = 1,X, = 0,and X, = 1 gives negative 1101, or — 13
in decimal.

This system is called the signed-integer binary svstem, or signed-magnitude

binary integer system. If a register contains eight flip-flops, a signed binary number

in the system would have 7 magnitude, or integer, bits and a single sign bit. So
00001111 would be + 15, and 10001111 would be — 15, since the leading 0 and
1 indicate the plus and minus signs only.

The magnitude of numbers which can be stored in the two representation
systems in Fig. 5.1 are as follows:

1 For binary integer representation, an n-flip-flop register can store from (dec-
imal) 0 to 2" — 1. A 6-bit register can therefore store from 000000 to 111111,
where 111111 is 63, which is 26 — 1, or 64 — 1.

2  The signed binary integer representation system has a range of — (2" —

1)to +(2"~' — 1) for a binary register. For instance, a seven-flip-flop register
can store from — 111111 to + 111111, which is —63 to +63 [(2° — 1) to
+ (2% - D).

In the following sections we learn how to perform various arithmetic and
logical operations on registers.

BINARY HALF-ADDER

6.3 A basic module used in binary arithmetic elements is the half-adder. The
function of the half-adder is to add two binary digits, producing a sum and a carry
according to the binary addition rules shown in Table 5.1. Figure 5.2 shows a
design for a half-adder. There are two inputs to the half-adder, designated X and
Y in Fig. 5.2, and two outputs, designated § and C. The half-adder performs the
binary addition operation for two binary inputs shown in Table 5.1. This is arith-
metic addition, not logical or boolean algebra addition.

As shown in Fig. 5.2, there are two inputs to the half-adder and two outputs.
If either of the inputs is a 1 but not both, then the output on the S line will be a
1. If both inputs are Is, the output on the C (for carry) line will be a 1. For all

*Some companies number registers with the sign bit A, the most significant bit A, and so on to the least
significant bit A, is a register with n + 1 bits. IBM does this for some of its computers, for example.
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INPUT SUM BITS '

other states, there will be a 0 output on the CARRY line. These relationships may
. . FULL-ADDER

be written in boolean form as follows:

S

C

+ XY

~ =l

X
X

A quarter-adder consists of the two inputs to the half-adder and the S output
only. The logical expression for this circuit is, therefore, § = XY + XY. This is
also the exclusive OR relationship for boolean algebra (refer to Chap. 3).

FULL-ADDER

5.4 When more than two binary digits are to be added, several half-adders will
not be adequate, for the half-adder has no input to handle carries from other digits.
Consider the addition of the following two binary numbers:

1011 1011

+ 1110 + 1110
11001 = sum 0101 partial sum
' 11 carry bits

11001 = complete sum

It

FIGURE 5.2

Half-adder.
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S =XYC, + XYEi +XYC; + xvc,
Co = XYC; + XYC; + XYC; + XYC,
or
C, = XC; + XY + YC;
FIGURE 5.3
Full-adder.

As shown, the carries generated in each column must be considered during the
addition process. Therefore adder circuitry capable of adding the contents of two
registers must include provision for handling carries as well as addend and augend
bits. So there must be three inputs to each stage of a multidigit adder—except the
stage for the least significant bits—one for each input from the numbers being
added and one for any carry that might have been generated or propagated by the
previous stage.

The block diagram symbol for a full binary adder, which will handle these
carries, is illustrated in Fig. 5.3, as is the complete table of input-output relation-
ships for the full-adder. There are three inputs to the full-adder: the X and Y inputs
from the respective digits of the registers to be added and the C, input, which is
for any carry generated by the previous stage. The two outputs are S, which is the
output value for that stage of the addition, and C,, which produces the carry to be
added into the next stage.® The boolean expressions for the input-output relation-
ships for each of the two outputs are also presented in Fig. 5.3, as is the expression
for the C, output in simplified form.

A full-adder may be constructed of two half-adders, as illustrated in Fig. 5.4.
Constructing a full-adder from two half-adders may not be the most economical
technique, however; generally full-adders are designed directly from the input-
output relations illustrated in Fig. 5.3.

A PARALLEL BINARY ADDER

5.5 A 4-bit parallel binary adder is illustrated in Fig. 5.5. The purpose of this
adder is to add two 4-bit binary integers. The addend inputs are named X, through
X3, and the augend bits are represented by Y, through Y5.* The adder shown does

*C; is for carry-in and C, for carry-out.
“These inputs would normally be from flip-flop registers X and ¥, and the adder would add the number
in X to the number in Y, giving the sum, or S, through ;.
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Full
adder

A PARALLEL BINARY
ADDER

FIGURE 5.4

Half-adder and full-
not possess the ability to handle sign bits for the binary words to be added, but  adder relations.
only adds the magnitudes of the numbers stored. The additional circuitry needed
to handle sign bits is dependent on whether negative numbers are represented in
true magnitude or in the 1s or 2s complement systems, and this problem is described
later.

FIGURE 5.5

Parallel adder.

Inputs

End around carry
oradd 1 line. This
link is made a 0

when two integers
are added.

A 1 on this line
indicates an overflow
when two integers [
-are added.

Add line

2
Output
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Consider the addition of the following two 4-bit binary numbers:

0111 WhCI‘CX3 = 0, Xz = 1, X] = l,andXO = l
0011 where Y; = 0,7, =0,Y, = l,and ¥, = 1
Sum = 1010

The sum should therefore be §; = 1,5, = 0,5, = 1, and S, = 0.

The operation of the adder may be checked as follows. Since X, and Y, are
the least significant digits, they cannot receive a carry from a previous stage. In
the problem above, X, and Y, are both 1s, their sum is therefore 0, and a carry is
generated and added into the full-adder for bits X, and Y. Bits X, and Y, are also
both 1s, as is the carry input to this stage. Therefore, the sum output line S, carries
a 1, and the CARRY line to the next stage also carries a 1. Since X, isa 1, Y, is
a 0, and the carry input is I, the sum output line S, will carry a 0, and the carry
to the next stage will be a 1. Both inputs X; and Y, are equal to 0, and the CARRY
input line to this adder stage is equal to 1. Therefore, the sum output line S; will
represent a 1, and the CARRY output line, designated as ‘*overflow’” in Fig. 5.5,
will have a 0 output.

The same basic configuration illustrated in Fig. 5.5 may be extended to any
number of bits. A 7-bit adder may be constructed by using 7 full-adders, and a
20-bit adder by using 20 full-adders.

Note that the OVERFLOW line could be used to enable the 4-bit adder in
Fig. 5.5 to have a 5-bit output. This is not generally done, however, because the
addend and augend both come from storage, and so their length is the length of
the basic computer word, and a longer word cannot be readily stored by the ma-
chine. It was explained earlier that a machine with a word length of n bits (con-
sisting of sign bit and n — 1 bits to designate the magnitude) could express binary
numbers from —2"~! + 1to 2"~! — 1. A number within these limits is called
representable. Since the simple 4-bit adder in Fig. 5.5 has no sign bit, it can
represent only binary integers from 0 to 15. If 1100 and 1100 are added in the
adder illustrated in Fig. 5.5, there will be a 1 output on the OVERFLOW line
because the sum of these two numbers is 11000. This number is 24 decimal and
cannot be represented in this system. Such a number is referred to as nonrepre-
sentable for this particular very small register. When two integers are added such
that their sum is nonrepresentable (that is, contains too many bits), then we say
the sum overflows, or an overflow occurs and a 1 on the CARRY line for the full-
adder connected to the most significant digits indicates this.

The AND gates connected to the S output lines from the four adders are used
to gate the sum into the correct register.

POSITIVE AND NEGATIVE NUMBERS

5.6 When numbers are written in the decimal system, the common practice is
to write the number as a magnitude preceded by a plus or minus sign, which
indicates whether the number is positive or negative. Hence + 125 is positive and
— 125 is negative. The same practice is generally used with binary numbers: + 111
is positive 7, and — 110 is negative 6. To handle both positive and negative num-



